On resource-bounded instance complexity
نویسندگان
چکیده
منابع مشابه
On Resource-Bounded Instance Complexity
The instance complexity of a string x with respect to a set A and time bound t, ic t (x : A), is the length of the shortest program for A that runs in time t, decides x correctly, and makes no mistakes on other strings (where \don't know" answers are permitted). Schh oning, and Watanabe states that for every recursive set A not in P and every polynomial t there is a polynomial t 0 and a constan...
متن کاملOn the Complexity of Resource-Bounded Logics
We revisit decidability results for resource-bounded logics and use decision problems on vector addition systems with states (VASS) in order to establish complexity characterisations of (decidable) model checking problems. We show that the model checking problem for the logic RB±ATL is 2EXPTIME-complete by using recent results on alternating VASS (and in EXPTIME when the number of resources is ...
متن کاملResource-Bounded Kolmogorov Complexity Revisited
We take a fresh look at CD complexity, where CD t (x) is the smallest program that distinguishes x from all other strings in time t(jxj). We also look at a CND complexity, a new nondeterministic variant of CD complexity. We show several results relating time-bounded C, CD and CND complexity and their applications to a variety of questions in computational complexity theory including: Showing ho...
متن کاملResource bounded randomness and computational complexity
The following is a survey of resource bounded randomness concepts and their relations to each other. Further, we introduce several new resource bounded randomness concepts corresponding to the classical randomness concepts, and show that the notion of polynomial time bounded Ko randomness is independent of the notions of polynomial time bounded Lutz, Schnorr and Kurtz randomness. Lutz has conje...
متن کاملResults on Resource - Bounded
We construct an oracle relative to which NP has p-measure 0 but D p has measure 1 in EXP. This gives a strong relativized negative answer to a question posed by Lutz Lut96]. Secondly, we give strong evidence that BPP is small. We show that BPP has p-measure 0 unless EXP = MA and thus the polynomial-time hierarchy collapses. This contrasts with the work of Regan et. al. RSC95], where it is shown...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Theoretical Computer Science
سال: 1996
ISSN: 0304-3975
DOI: 10.1016/0304-3975(95)00097-6